
Spanning trees
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Outline

I What is a spanning tree? Why do we use them?
I What algorithms can we use to construct spanning trees?
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BFS in graphs

I Recall that when we do breadth-first search in graphs, we visit
nodes in the graph in “layers” –

I we start with an initial node n, then we visit nodes which are
one link distant from n, then 2, and so on.

I If our graph happened to consist of nodes like those below . . .
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BFS in graphs

I . . . then the nodes would get visited in this order:

01

1 1

1

1 1

2 2 2

2

2

2

2

2 2

2 2 2

4 / 23



BFS in graphs

Furthermore, even though the graph has cycles, if we keep track of
which node we “came from” while doing our visit, we will never
from a cycle – since we never visit a node we’ve already visited.
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BFS in graphs

And if we keep track of the vertex we “came from” – then there’ll
be exactly one path between any two vertices. (Ignore the
“direction” arrows.)

Which is exactly what a tree is: a tree is just a graph in which there
is exactly one path between any two vertices.
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BFS in graphs
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BFS in graphs

So, we can use the BFS algorithm to turn a graph into a tree.

Furthermore, there are no “extra” edges . . .
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. . . unlike in this graph (in which there is more than one path
between some vertices).
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Terminology

Let us define some useful terminology:

I A subgraph of a graph G is any subset of the edges and
vertices of G .

I A connected subgraph is one in which there is some path
between any two vertices in the graph.

9 / 23



Terminology

I We have constructed what is called a spanning tree of our
graph G .
I Or to be precise, once we leave off the arrow-heads, we will

have.
I A spanning tree is a connected subgraph of G that spans all

vertices.
I In other words, it includes all the vertices of G , but may not

include all the edges.
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Spanning trees

For any one graph, we can have multiple spanning trees:
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Minimum spanning trees

I Furthermore, because we used no “extra edges”, we have what
is called a minimimum spanning tree (MST) of our graph.

I A minimum spanning tree is a tree which has the minimum
total “cost”;

I and for an unweighted graph, the cost of a tree is the number
of edges.

I We used the minimum number of edges to construct our tree,
hence it is a minimum spanning tree.
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Minimum spanning trees

So, to summarize: a minimum spanning tree . . .

I . . . counts as a tree because it has no cycles (we say it is
acyclic).

I . . . is “spanning” because it spans the graph – it covers every
vertex.

I . . . is minimum because it has the smallest cost amongst all
possible spanning trees.
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Why do we want MSTs?

MSTs are useful because many problems turn out to make use of
them.

For instance – suppose we want to build roads between a number of
towns, and we are interested in keeping our costs low.

We therefore might want to build the smallest number of roads
possible, that will nevertheless allow people to travel from any town
to any other town.

The result will be minimum spanning tree: the towns are nodes, the
roads are edges, and the cost of each road could be the cost of
building it.

(In this case, we would want to use a weighted graph, rather than
unweighted – for each road, we’d want to associate with it some
number, namely the cost to build it.)
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Why do we want MSTs?

Other places we might want to use MSTs could be . . .

I in working out connections needed on a circuit board to
connect components

I in working out what cables are needed in order to connect
telephone exchanges in a telecommunications network

I performing cluster analysis of data (working out how a data set
can be organized into clusters of data points with a small
“distance” between points in each cluster).
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MSTs for weighted graphs

I If we want to find an MST for a weighted graph – that is, a
graph where each edge is associated with some number, a
weight – then we have to amend our algorithm somewhat.

I We will study Prim’s algorithm for generating an MST for a
weighted graph.
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Greedy algorithms

I Prim’s algorithm is what is called a greedy algorithm.
I A greedy algorithm is one in which we don’t have an overall

“strategy” for achieving some goal, but just do whatever looks
best at the moment.

I For instance, suppose we want to get to the top of a mountain
as quickly as possible. (And are very good at ascending even
the steepest surfaces.)

I In that case, if we had the choice between two roads – a gentle
road and a steep road – we would take the steep road, because
it ascends most quickly.

I A greedy strategy for ascending the mountain would be one
where, at every possible choice, we took the steepest path.

I (In fact, from this analogy we get a computational search
technique known as “hill-climbing”.)
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Greedy algorithms

I For some sorts of problems, greedy algorithms won’t give us a
good solution; but luckily, for the MST problem, they do.
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Prim’s algorithm

For our basic BFS algorithm, we used a queue to store a list of
nodes we had to visit.

In Prim’s algorithm, we use a priority queue.

Recall that in a normal queue, the first item enqueued into the
queue is also the first item we get when we dequeue.

But in a priority queue, our items can be put in order of priority,
and we instead get the item in the queue with highest priority.
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Prim’s algorithm

As with the BFS algorithm, we will also need an array colour, which
can hold the values
white (0), grey (1) or black (2) for each vertex.

White means “not visited at all”, grey means “added to the queue,
but not yet visited”, and black means “visited”.

We’ll need (as with BFS) an array p (“p” standing for “parent”),
where p(v) contains the immediate parent of each node in the MST.

And finally, we’ll also need an array key, with the weights of the
edges in the tree.
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Algorithm pseudocode

Prim’s algorithm is in fact extremely similar to our BFS algorithm. . .

BFS algorithm
- put v into the queue Q
- colour[v]=white for all vertices v,
- p(v) is undefined.
- while Q is not empty:

- dequeue w from the head of Q
- for each vertex x adjacent to w:

- if colour[x] is white:
- p(x) = w
- colour[x] = grey
- enqueue x onto the tail of Q

- colour[w] = black
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Algorithm pseudocode
Except that for additional steps shown here in blue:

Prim’s algorithm
- put v into the queue Q
- colour[v]=white for all vertices v,
- p(v) is undefined.
- while Q is not empty:

- dequeue w from the head of Q
- for each vertex x adjacent to w:

- if colour[x] is white:
- p(x) = w
- colour[x] = grey
- enqueue x onto the tail of Q

- else if colour[v] is grey:
- if key[v] > edgeWeight(w,v):

- key[v] = edgeWeight(w,v)
- p(v) = w

- colour[w] = black
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Algorithm result

At the end of the MST search, every vertex in the graph will have
the colour black and the parent array p will contain the edges of the
MST.

We will not step through Prim’s algorithm in detail; but Java code
for the algorithm is provided in PrimMST.java in your Java code
bundle, and it is recommended you try out the code in Eclipse.
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