
Graph algorithms and Breadth-first search

Lecturer: Arran Stewart

1 / 25



Outline

I What is graph search?
I What is breadth-first search (BFS)?

2 / 25



Graph algorithms

We said in previous lectures that what graph representation is best
depends on what sort of questions we want to ask about a graph.

Questions we might ask are things like:

I What is the sum of all the vertices in a graph G , where each
vertex holds an int?

I What is the shortest weighted path from one vertex (say, a
vertex representing Perth airport) to another (say, a vertex
representing Chongqing Jiangbei International Airport)?

I What is the least costly way of connecting vertices representing
electric power stations and buildings?

3 / 25



Graph algorithms
Questions like

I What is the sum of all the vertices in a graph G , where each
vertex holds an int?

are examples of graph traversal – they ask us to visit every vertex in
the graph.

Two possible ways of performing graph traversal we could consider
are:

I breadth-first search (BFS):
I From an initial vertex, imagine starting multiple paths to

neighbours, and advance each path one step at a time
I depth-first search (DFS):

I Put the edges leading out of a starting vertex in some order, left
to right, and continue exploring the left-most path out of each
vertex until you reach an end to the path. Then start exploring
one-after-the-left, then the second after the left, and so on
(“deepest” first)

4 / 25



Depth-first search (DFS)

We have already encountered these terms (BFS and DFS) when
looking at trees.

We said that for trees, depth-first search results from doing a
“pre-order” traversal of a tree.

I Recall that the mnemonic for pre-order binary tree traversal is
“NLR” (visit a Node, then its Left child, then the Right,
recursively).

5 / 25



Depth-first search (DFS)

The following diagram shows the order nodes would be visited in a
graph when doing a depth-first search.

1

2 7 8

3 6 9 12

4 5 10 11

1

2 7 8

3 6 9 12

4 5 10 11

6 / 25



Depth-first search (DFS)

1

2 7 8

3 6 9 12

4 5 10 11

1

2 7 8

3 6 9 12

4 5 10 11

This graph happens to be a tree; trees are just a subset of graphs,
where nodes in the tree are vertices in the graph, and an edge exists
between any child node in the tree and its parent.

7 / 25



Breadth-first search (BFS)

Recall that for a tree, breadth-first search visits nodes “level by
level”; we can do the same for graphs.

1

2 3 4

5 6 7 8

9 10 11 12

1

2 3 4

5 6 7 8

9 10 11 12

8 / 25



Breadth-first search

We can apply breadth-first search to graphs which are not trees, as
well, like the following:

I We start with an initial node n, then we visit nodes which are
one link distant from n, then 2, and so on.

9 / 25



Breadth-first search
The order we visit the nodes would be as follows

01

1 1

1

1 1

2 2 2

2

2

2

2

2 2

2 2 2

(where nodes with the same number are visited in some arbitrary
order).

Previously, we only explained breadth-first search informally; we will
now explain an algorithm for doing breadth-first search.

10 / 25



Breadth-first search (BFS)

This algorithm starts from a given vertex v and explores a graph G
in a breadth-first manner.

We shall see also that as it does so, it constructs what we call a
spanning tree for graph G , called the breadth-first tree.

11 / 25



Breadth-First Search Algorithm (BFS)

I The algorithm uses a queue as its main data structure.
I The basic idea is simple:

I Starting with a queue containing just one node, consider the
neighbours of each node.

I Visit any new vertices from the neighbours, until there are no
more vertices to be added.

1

2 3 4

5 6 7 8

9 10 11 12

1

2 3 4

5 6 7 8

9 10 11 12

12 / 25



Implementing BFS

In order to implement BFS we maintain three data structures:

1. Q, the queue of vertices to be processed
2. An array colour, with values white (0), grey (1) or black (2)

for each vertex.
3. An array p, which where p(v) contains the immediate parent of

v in the spanning tree. That is the edges of the spanning tree
are given by (v, p(v))

13 / 25



BFS Algorithm

- put v into the queue Q
- colour[v]=white for all vertices v,
- p(v) is undefined.
- while Q is not empty:

- dequeue w from the head of Q
- for each vertex x adjacent to w:

- if colour[x] is white:
- p(x) = w
- colour[x] = grey
- enqueue x onto the tail of Q

- colour[w] = black

14 / 25



BFS Algorithm
At the end of the BFS search, every node will have the colour black and the parent
array p will contain details of a BFS spanning tree.

Let us examine how the BFS algorithm works on the following graph:

2

3

4

5

6 7

1

Initially, our queue Q contains 1.

We will ignore the use of the p array for the moment – but basically, each time we add
something to the queue, we use p to store where the search came from when moving
to some node n.

15 / 25



BFS step 1

2

3

4

5

6 7

1

I Q = [ 1 ]
I Dequeue 1 from the queue Q
I Colour 2 grey and add it to the queue
I Colour 1 black

16 / 25



BFS step 2

2

3

4

5

6 7

1

I Q = [ 2 ]
I Dequeue 2 from the queue Q
I Colour 3 grey and add it to the queue
I Colour 5 grey and add it to the queue
I Colour 2 black

17 / 25



BFS step 3

2

3

4

5

6 7

1

I Q = [ 3, 5 ]
I Dequeue 3 from the queue Q
I Colour 6 grey and add it to the queue
I Colour 3 black

18 / 25



BFS step 4

2

3

4

5

6 7

1

I Q = [ 5, 6 ]
I Dequeue 5 from the queue Q
I Colour 4 grey and add it to the queue
I Colour 7 grey and add it to the queue
I Colour 5 black

19 / 25



BFS step 5

2

3

4

5

6 7

1

I Q = [ 6, 4, 7 ]
I Dequeue 6 from the queue Q
I Colour 6 black

20 / 25



BFS step 6

2

3

4

5

6 7

1

I Q = [ 4, 7 ]
I Dequeue 4 from the queue Q
I Colour 4 black

21 / 25



BFS step 7

2

3

4

5

6 7

1

I Q = [ 7 ]
I Dequeue 7 from the queue Q
I Colour 7 black

22 / 25



BFS Java code

The code for the BFS algorithm is provided in BFS.java in your
Java code bundle.

23 / 25



BFS and “shortest path” problems

Breadth-first search also provides us with a way of answering
questions like

I Given two vertices A and B in a graph G , what is the shortest
path between them?

24 / 25



BFS and “shortest path” problems

I Given two vertices A and B in a graph G , what is the shortest
path between them?

To answer this question, we just do breadth-first search starting
from vertex A.

And each time we visit a vertex, we check whether we’ve found
vertex B; if we have, we stop. And the p array, which stores the
“path back” to node A, is the shortest route from A to B.

25 / 25


