
Hash tables

Lecturer: Arran Stewart

1 / 27



Outline

I What is a hash table?
I Implementing hash tables

2 / 27



Review
I Before we look at hash tables, let’s first review the pros and

cons of some simpler data structures.
I Recall that arrays allow us to store elements of a single data

type contiguously in memory.
I We can access any element of an array in a single step by

indexing into the array – array lookup has constant complexity,
O(1).

I This is very useful, because many algorithms depend on fast
access to array elements
I For instance, binary search, or sorting algorithms
I It would be possible to do binary search on, say, a linked list,

but very, very slow.

58 17

3 / 27



Review – arrays
I A downside of arrays is that their size is fixed – you must

specify an array size when you create the array.

I There is no guarantee that more memory, adjacent to your
array, will be available for use later.

I So arrays cannot easily grow.
If you want an array of a new size, you have to create a fresh,
new array of the desired size, and copy over all the elements of
the old array (which has O(n) complexity, where n is the size of
the old array).
I (Internally, this is what java.util.ArrayList does. If the

array used by an ArrayList is full and more room is needed, a
new array is allocated which in most implementations is 150%
the size of the old one, then the contents of the old one are
copied over. If you are interested, source code for one
implementation is available here.)

4 / 27

https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java#l237


Review – linked lists

I Recall that we also learned about linked lists;
I Linked lists can can grow easily, because their elements are not

necessarily contiguous in memory.
I Each node in a linked list contains the element that we want to

store, and a pointer to the next node in the list.
I when one node “points to” another node, they could be very far

apart in memory.

8

next

17

next

5

next
∅

5 / 27



Review – linked lists
I A disadvantage of linked lists is that we no longer have the

ability to get quick access to individual elements via their index,
like we did with arrays.

I If we want to access a particular element – say, the tenth item
in a list – we need to traverse the first nine items in the list
until we get to the tenth.
So the complexity of lookup will be O(n), where n is the index
of the element we want to access.

I Or, if we want to find a list element containing the value “17”,
say – we must do a sequential search through the list, checking
each node to see if it contains that value.
I In the worst case, searching for an element has O(n) – which is

not very efficient.

8

next

17

next

5

next
∅

6 / 27



Hash tables

I But what if we could combine the two in some way?
What if we could have fast operations on a collection, like an
array, but also allow our collection to grow?

I Hash tables offer a solution.
I Hash tables are used when speedy insertion, deletion, and

lookup of elements is a priority.
I In theory, insertion, deletion, and lookup can even be

accomplished in constant time, O(1).

7 / 27



Hash tables

I But what if we could combine the two in some way?
What if we could have fast operations on a collection, like an
array, but also allow our collection to grow?

I Hash tables offer a solution.

I Hash tables are used when speedy insertion, deletion, and
lookup of elements is a priority.

I In theory, insertion, deletion, and lookup can even be
accomplished in constant time, O(1).

7 / 27



Hash tables

I But what if we could combine the two in some way?
What if we could have fast operations on a collection, like an
array, but also allow our collection to grow?

I Hash tables offer a solution.
I Hash tables are used when speedy insertion, deletion, and

lookup of elements is a priority.

I In theory, insertion, deletion, and lookup can even be
accomplished in constant time, O(1).

7 / 27



Hash tables

I But what if we could combine the two in some way?
What if we could have fast operations on a collection, like an
array, but also allow our collection to grow?

I Hash tables offer a solution.
I Hash tables are used when speedy insertion, deletion, and

lookup of elements is a priority.
I In theory, insertion, deletion, and lookup can even be

accomplished in constant time, O(1).

7 / 27



Combining arrays and linked lists
I How can we combine arrays and linked lists?

I What about creating an array of linked lists?

1
null

32

null
17

19

3

99 5

11

null

I As long as our lists were not too long, we would be able to get
to any item we wanted quickly.

8 / 27



Combining arrays and linked lists
I How can we combine arrays and linked lists?

I What about creating an array of linked lists?

1
null

32

null
17

19

3

99 5

11

null

I As long as our lists were not too long, we would be able to get
to any item we wanted quickly.

8 / 27



Combining arrays and linked lists
I How can we combine arrays and linked lists?

I What about creating an array of linked lists?

1
null

32

null
17

19

3

99 5

11

null

I As long as our lists were not too long, we would be able to get
to any item we wanted quickly.

8 / 27



Combining arrays and linked lists

1
null

32

null
17

19

3

99 5

11

null

I For instance, if we ensured our lists were always at most 5
items long – then we could quickly go to a particular cell in the
array, and then traverse at most 5 elements to get to the one
we wanted.

I But how will we organize our values so we can find a particular
one in this structure?

9 / 27



Hash functions

I To do this, we rely on hash functions.
I What is a hash function?

I It is a function that takes a piece of data as input – we’ll call
this the key – and outputs an integer, commonly referred to as
a hash value.

I When given the same piece of data, the hash function always
returns the same number.

hash(x) = ...

10 / 27



Hash functions

I What if we had a hash function, and could ensure that the
numbers it output were always within the bounds of an array?

I For instance, if our array is of size 15, say, then we would be
looking for a hash function which always output numbers in the
range 0 to 15.

11 / 27



Hash function examples

Here is an example of a (not very good) hash function f that
operates on strings:

I f : given some string s, look at the first letter of the string, and
return a number based on the letter’s position in the English
alphabet.

So, for instance, f("apple") would be 0, because the letter 'a' is
the zeroth1 letter of the English alphabet.

And f("banana") would return 1, and f("cat") would return 2.

1Many people might say it is the first letter. But in computer science, we
nearly always prefer to start counting from zero.

12 / 27



Hash function examples

Now we could store these strings in an array:

I We would store "apple" in position 0
I "banana" in position 1
I "cat" in position 2
I and so on, if we had more strings.

null

0 1 2 3

...

apple banana cat

null null null

hash("apple") == 0

13 / 27



Hash function examples
This would also mean we could search for items very quickly.

If we wanted to know if the word “cat” is in the array, we just look
at its first letter; see that it is “c”; and look in position 2 of the
array.

If the array cell is empty (i.e. null), then the item is not in our
collection.

So, for instance, we hash the string “dog”, the result is 3; but if we
look in position 3, there is nothing there.

null

0 1 2 3

...

apple banana cat

null null null

hash("apple") == 0

14 / 27



Hash function performance

I Now, looking at the first letter of a string is very fast.
I And accessing an array position is very fast.
I So this seems to mean we have fast, O(1) access to items in

our collection.

15 / 27



Hash function problems

A problem with this system: what if we have more than one word
beginning with 'a'?

Perhaps we want to store the word “ant” in our array; and
f("ant") will give us 0, the same as for “apple”.

16 / 27



Separate chaining

I This is where the linked list comes in useful.

I Instead of storing each string directly in the array, we can make
each cell of the array store a linked list.

I And if two items hash to the same position in the array - we
simply insert a new item into our linked list.

17 / 27



Separate chaining

I This is where the linked list comes in useful.
I Instead of storing each string directly in the array, we can make

each cell of the array store a linked list.

I And if two items hash to the same position in the array - we
simply insert a new item into our linked list.

17 / 27



Separate chaining

I This is where the linked list comes in useful.
I Instead of storing each string directly in the array, we can make

each cell of the array store a linked list.
I And if two items hash to the same position in the array - we

simply insert a new item into our linked list.

17 / 27



Separate chaining

When we have two items which have the same hash value, that is
called a collision; and using linked lists to resolve hash table
collisions is an approach called separate chaining.

It looks like this:
0 1 2 3 4

apple

ant

banana cat
null null

. . .

18 / 27



Separate chaining performance

What is the performance for a hash table based on separate
chaining?

Well – if we consider it based on the size of the longest linked list –
let’s call that number m – then the complexity of lookup is O(m/k),
where k is the size of our array.

Which, if we consider k to be constant, is the same as O(m), which
is linear, and not especially good.

19 / 27



Separate chaining performance

An example: suppose we use our simplistic “first letter” hash
function, and that we have allocated an array of size 26 (one for
each letter in the English alphabet).

If the longest chain happens to be of length 15, let that be m;
then the complexity of lookup is O(m/26).

And O(m/26) is the same as O(m). (We don’t simplify any further,
as we’re expressing speed in terms of the size of the longest list.)

We’ve said in previous lectures that if we can get it, we’d much
prefer O(logm) or O(1), if we can get it.

20 / 27



Separate chaining performance

On the other hand, as long as our linked lists never grow too long,
in practice, the performance could be very good.

If k is 100, say, and we have 104 items in our table, then at least a
few cells must have more than one value stored in their linked list.
But the results will be very close to the case where we have
constant time access.

(An alternative to using linked lists is an approach called “linear
probing”: if we want to store “apple”, and cell 0 is full, we just store
the word in the next available cell. But this still results in linear
search.)

21 / 27



Resizing

I In practice, hash table often adopt a method called “dynamic
resizing” to deal with too many collisions.

I We could have a rule:
No linked list in our table may ever be longer than 5 elements
long.
If any linked list is about to grow to more than 5 elements – we
allocate a new array, with double the size of the old array,
re-hash all the elements.

I This means we need a better hash function, though – our old
hash function, f , only gave us numbers from 0 to 25, and now
we need numbers from 0 to 51.

22 / 27



Improved hash functions

I In practice, we instead use hash functions with a very large
range – say, from 0 to 231 − 1, the range of positive ints in
Java – and just use the modulo (%) operator to work out which
index of our array to use.

I So for instance, if we had a good hash function h for strings,
which gave as ints in this range, we could use it as follows:
I Given a string “apple”, calculate h("apple"); suppose the

result is 82347.
I Calculate the modulus of 82347, given the size of our array (26)

– the result of 82347 % 26 is 5.
I So we store “apple” in position 5 of the array.
I And if the array size doubles, we can re-calculate a new position

for apple, based on the new size of the array.

23 / 27



Perfect hash functions

Some terminology:

A hash function that maps each item to a unique position is called
perfect.

If we had an infinitely large array, we could always design a perfect
hash function. But in practice, of course, this is not possible.

So instead, we settle for hash functions which are not necessarily
perfect, but do have some desirable properties.

24 / 27



Properties of good hash functions

I A good hash function should make use of all information
provided by a given key in order to maximize the number of
possible hash values.

I This is why our function f was not a good hash function – it
only examines the first letter of a string.

I For a good hash function, if we give it the strings “cat” and
“caterpillar”, it should give us different ints, even though both
words start with “cat”.

25 / 27



Properties of good hash functions

I A good hash function should spread values evenly across the
hash table.

I This will reduce the length of linked lists should collisions occur.
I It’s also a good sign if your hash value is capable of generating

very different hash values for similar keys, making collisions
much less likely.
I For instance, if our hash function gives us very different results

for “caterpillar” and “caterpillars” – that gives us some
confidence it may be a good hash function.

26 / 27



Further reading

We will not look in detail at the algorithms used to calculate hash
values in practice.

But the textbook (Weiss) gives some good guidance in this area.

27 / 27


