
Sorting with merge sort

Lecturer: Arran Stewart

1 / 19

Outline

We discuss:

I What is the idea behind merge sort?
I How is it implemented?
I How does merge sort compare with other popular sorting

algorithms?

2 / 19

Merge sort

I Merge sort is based on the idea that
I it’s easier to sorting short lists than long lists
I if we have two sorted lists, it’s easy to “merge” them into a

longer sorted list.
I For instance, suppose we have the following two (very short)

sorted lists: [2, 5] and [3, 4].
I It is easy to see that we can merge these into a longer sorted

list:
[2, 3, 4, 5]

3 / 19

Merging lists

I We will consider the process of merging sorted lists first.
I Suppose we have the following two sorted lists:

[1, 3, 4, 7] and [2, 5, 6, 8].
I It might seem easy to us to know how to merge these – but we

need to express it in a form the computer can use.

4 / 19

Merging lists

I The idea is: we start at the front of each list; since they’re
sorted, we know one of those elements will be the first element
in the merged list.

I Then, we “step” along each list, deciding from which list we
will draw the next element to go in our merged list.
I One incorrect idea is to just alternate between the lists – but

that won’t work.
I If you try this for the lists above, you’ll see it works for the first

three elements, then produces a wrong result.

5 / 19

Merging lists

I Let’s try this for the two lists above . . .

6 / 19

Complexity of merging

I What is the big ‘O’ complexity of merging two sorted lists?
I We can describe it in terms of the length of the output list.

I (Note that in previous cases, we have described complexity in
terms of the input data set – but we can use whatever is
convenient.)

I If the final list contains n numbers – we couldn’t have done
more than n comparisons.
I So – we need at most n comparisons to correctly merge the two

lists;
I And therefore the merge algorithm runs in linear time, or has

O(n).

7 / 19

Sorting in merge sort

I Merge sort is what is called a “divide and conquer” algorithm –
it breaks a big problem into many much smaller problems.

I The major parts of the merge sort algorithm can be described
as follows.

I To sort an array using a method mergeSort:
I split the array in two, at the middle. (If we have an array with

an odd number of elements, that’s fine – we can arbitrarily
decide which of the two sub-lists will be the bigger.)

I recursively call mergeSort on each of the lists.
I merge the two lists.

8 / 19

Sorting in merge sort

Let’s see how merge sort works when applied to the following list:

38 27 43 3 9 82 10

9 / 19

Sorting in merge sort
First, the recursive calls to mergeSort will split the array into half,
each time:1

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

And eventually, we have a set of “lists” which only contain a single
element; which means each of them can be considered sorted.

1Image adapted from Wikimedia Commons diagram by Vineet Kumar.
10 / 19

https://commons.wikimedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Merging in merge sort

And once our initial list has been split into length-1 lists, it is easy
to apply the “merge” algorithm to merge them:

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

So we end up with a completely sorted list.

11 / 19

Java code for merge sort

The overall merge sort algorithm is implemented like this, in
SortingAlgorithms.java:

public static void mergeSort(short[] arr) {
mergeSort(arr, 0, arr.length-1);

}

private static void mergeSort(short[] arr, int l, int r) {
if (l < r) {

int mid = (l + r) / 2;
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
merge(arr, l, mid, r);

}
}

We will discuss this implementation.

12 / 19

Java code for merging

The Java code for merging is a little more complicated.

I First, we will copy the elements from our input lists, into two
new arrays we create for this purpose.

I Then when we do the “merge”, we can write the results of the
merge into the array arr (our original array).

private static void merge(short[] arr, int l, int mid, int r) {
int lsize = mid - l + 1;
int rsize = r - mid;
short[] left = new short[lsize];
short[] right = new short[rsize];

for (int i = 0; i < lsize; i++) {
left[i] = arr[l + i];

}
for (int j = 0; j < rsize; j++) {

right[j] = arr[mid + 1 + j];
}

13 / 19

Java code for merging
The code which actually does the merging is below.

I while there are still elements in both lists, we copy an element
from either the left or the right list.

I Once this is done – there may be “left over” elements in one of
the lists.
So we copy those as well.

int i = 0; int j = 0; int k = l;
while (i < lsize && j < rsize) {

if (left[i] < right[j]) {
arr[k++] = left[i++];

} else {
arr[k++] = right[j++];

}
}
while (i < lsize) { // Copy rest of first half

arr[k++] = left[i++];
}
while(j < rsize) { // Copy rest of second half

arr[k++] = right[j++];
}

}
14 / 19

Performance of merge sort

I Recall that for insertion sort, sorting had a worst-case running
time of O(n2) – the algorithm contained a nested loop.

I How does merge sort compare?

15 / 19

Performance of merge sort

I It turns out that merge sort has a worst-case running time of
O(n log n).

I Why is this?
I The “splitting” part of merge sort will take log n running time –

as we have seen, it requires log2 n steps to repeatedly divide a
number into two until you reach 1.

I And at each “level” – i.e., for each of those log2 n steps – we
will have to do a merge
I and we have seen that the run-time of the merge algorithm is

linear – that is, O(n) – with respect to the size of the merged
list.

I The way in which these combine is a little complicated, and we
will not cover it –
but it turns out that the merge sort algorithm as a whole ends
up with O(n log n) complexity.

16 / 19

Performance of merge sort

I This turns out to be the best possible “big ‘O’ ” running time
can have for sorting a list (in the worst case).

I This doesn’t mean merge sort will always be faster than
insertion sort.

I It could well be that some other sorting algorithms might
perform better on lists up to a certain size.

17 / 19

Costs of merge sort

I The good performance of merge sort does come with some
disadvantages.

I For insertion sort, we could sort the array “in place”:
we didn’t have to allocate any extra arrays besides the one we
were sorting.

I But for merge sort, when we do the “merge” step, we did have
to allocate extra arrays – we copied elements from the original
array, into a “left” and a “right” temporary array.

I So although merge sort has a better run-time complexity than
insertion sort, it will use more memory.

I Usually, however, the cost of the extra memory is not
unreasonable.

18 / 19

Use of merge sort

I Merge sort uses the fewest number of comparisons of the
popular sorting algorithms.

I So, it is often a good choice for a general-purpose sorting
algorithm.

I Merge sort was the sorting algorithm used for sorting arrays of
objects in versions of Java up until Java version 7
I From version 7 of Java onwards, the sorting algorithm used is a

more complex one invented by Tim Peters.
I However, that algorithm still uses general ideas taken from

merge sort.

19 / 19

https://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object%5B%5D)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(java.lang.Object%5B%5D)

