Insertion Sort

Lecturer: Arran Stewart

1/23



Outline

> What is insertion sort?
» How does it work?
> What is the algorithmic complexity of insertion sort?

2/23



Insertion sort

» Insertion sort is an algorithm which takes a list of numbers and

sorts them.
» It can be used to sort things other than numbers, too — but we
will stick to numbers for the moment.
» Recall that an algorithm is a step-by-step procedure for

accomplishing a task.

3/23



The basic idea

» Imagine that you have a pile of cards on your desk, each with a
number, that are in no particular order.

» If you wanted to sort them, one way you might do it is this:

> Pick a card out of the pile, and add it to a new pile (which we'll
call the “sorted pile”).

» Now pick a second card out of the pile, and put it in the correct
order with the one card you've got in the sorted pile.

» Now pick a third card, and do the same.

» ... and repeat this; until you've got no more cards in the
unsorted pile.

4/23



The basic idea

» Effectively, we are maintaining two lists: one of sorted,
processed cards, which we have looked at, and one of unsorted,
unprocessed cards, which we haven't.

5/23



An example

» We will consider how this works with an example.

» Suppose we start with a list of of six unsorted numbers — 3, 7,
4,6, 8, and 5.

> We'll consider all six elements of the list to be our unsorted
portion.

6/23



Java code for insertion sort
We will look at the code for insertion sort contained in the Java file
SortingAlgorithms. java.
The insertionSort method looks like this:

14 public static void insertionSort(short[] arr) {

15 for (int j = 1; j < arr.length; j++) {
16 short key = arr[j];

17 int i = j - 1;

18 while (i >= 0 && arr[i] > key) {
19 arr[(i + 1)] = arr[il;

20 i=1i-1;

21 }

22 arr[i + 1] = key;

23 }

24}

7/23



Java code for insertion sort

Some points about the code:

» short[] arr is the array we are sorting.
» Java has a few different sorts of numbers — short, int, and
long for instance.
» They differ from each other in how large the largest number
they can hold is.
» The variables i and j are used here to contain indexes into the
array arr.

8/23



Java code for insertion sort

» The variable j acts as a sort of boundary between the unsorted
portion and the sorted portion.

P It is the index of the first element of the unsorted portion — i.e.,
the element which have just taken from the unsorted portion,
and are trying to decide where to insert into the sorted portion.

» The for loop shows us that initially, the unsorted portion
starts at position 1; and each time through the loop, moves
one to the right.

9/23



Java code for insertion sort

» Within the for loop is a while loop, which uses the variable i.

> We can imagine that i points to a sport in the sorted portion,
and we are trying to decide whether the element we are looking
at should be inserted there.

» The code shows that, initially, we consider the spot directly to
the left of the element.

» And if that's not the right spot — we keep moving one spot to
the left.

» We can think of the arr[(i + 1)] = arr[i] line as follows:

» Each time we move i to the left — we shift the element

“beneath” us to the right, so that we are making space in the
unsorted portion for the new element to go.

10/23



Diagram of insertion sort

P> Let's consider a diagram of how insertion sort works.

11/23



Diagram of insertion sort (outer loop run O times)

unsorted portion

e

-

sorted portion

> At the very start of the algorithm, before the outer loop as

even run once: we can already consider the 1st element to be
in the sorted portion.

» i.e., We have a sorted portion of length 1.

12/23



Diagram of insertion sort (outer loop run 1 time)

» Then we will start the outer loop:
» 5 will be set to 1, and the element we are trying to put into the
“sorted” portion will be arr[j], which is 7.
» We will discover that 7 is bigger than 3, so the sorted portion is
already in correct order.
» And at the end of the first run of the outer loop, the array
looks like this:

unsorted portion

e

sorted portion

13/23



Diagram of insertion sort (outer loop run 2 times)

» Then we will run the outer loop a second time:
> j will be set to 2, and the element we are trying to put into the
“sorted” portion will be arr[j], which is 4.

» The inner loop will compare 4 with the element to its left, and
discover that 4 and 7 are out of order.

P> At the end of the second run of the outer loop, the array looks
like this:

unsorted portion

N

+

sorted portion

14/23



Diagram of insertion sort (outer loop run 3 times)

» And we continue with a third run of the outer loop, where j is
3 and the element we are trying to put into the sorted portion
is 6.

» Try running the insertionSort method in Eclipse, using the
debugger to see what is happening in the inner loop.

P After the third run of the outer loop, the array looks like this:

unsorted portion

+

sorted portion

15/23



Diagram of insertion sort (outer loop run 4 times)

» After the fourth run of the outer loop, the array looks like this:

unsorted portion

—

+

sorted portion

16/23



Diagram of insertion sort (outer loop run 5 times)

And finally, after the fifth run of the outer loop, all the elements are
in the “sorted” portion, and the algorithm ends, with the array
looking like this:

+

sorted portion

17/23



Complexity of insertion sort

» How long does it take to run insertion sort?

> We will first ask how long it takes to run in the worst case.
(i.e., what is the longest possible time it could take.)

» We had two loops in our algorithm with index variables j and i.

» We had to “move” j over all the elements in the unsorted
portion, shifting it one to the right each time.

» And within the sorted portion — if our list was completely out
of order — we might have to move the i index through all the
elements in the sorted portion.

18/23



Complexity of insertion sort

» If we have a loop over an array of size n, and each time
through that loop, we have another loop over the array, we
might think that the complexity of our algorithm is O(n?).

» And this is usually the case.

» But remember: our sorted and unsorted portions were never as
long as the whole array —
except at the end, when the “sorted” portion consisted of the
whole array.

» The outer loop will indeed run n times.

» But — in the worst case — the inner loop will run 1 time, then 2
times, then 3 times, and so on — up until the last execution of
the outer loop, when it will run arr.length - 1 times.
(Which is n — 1 times, since we are assuming our input is of
size n.)

19/23



Complexity of insertion sort
» It turns out there is a simple formula for

1424+3+..+(n—-2)+(n—-1)

» The formula is:

nx(n—1)
2
which is equivalent to
n?>—n
2
or
n2 n
2 2

20/23



Complexity of insertion sort
> As n “tends towards infinity”, how will

n?

>

NS

behave?
n? n
> Well, the > part will become much larger then the 5 (In fact,

.. n .
as n approaches infinity, the — part of the formula will become

a vanishingly small proportion of it.)

» So the answer is that as n tends towards infinity, the value of
the formula will approach

3

21/23



Complexity of insertion sort

» And that means that insertion sort has a worst-case running
time of O(n?), pronounced “Big ‘O’ n squared”.
» This is sometimes called quadratic running time.

22/23



Best-case performance

> What about if we ran insertion sort on a list that was already
sorted?

» In that case, the inner loop wouldn't need to run at all — the
“sorted” portion would simply increase each time through the
outer loop.

» So we would be able to sort the loop (in the best case) in n
steps —
so insertion sort has a best-case performance of O(n).

23/23



