
Java interfaces and generics

Lecturer: Arran Stewart

1 / 19

Outline

We discuss:

I What are Java interfaces?
I And how can we use them when implementing abstract data

type (ADTs)?
I What are Java generics?

I And how can we use them to avoid duplicating code?

2 / 19

Interfaces and generic types

I We have seen a little of the use of two features of Java that
are very useful for implementing abstract data types: interfaces
and generic types.

I We will now examine these in more detail.

3 / 19

Interfaces in Java

I An interface in Java is a little like a class.
I It can contain constants (like the public static int

CAPACITY constant we saw in the Stack class in week 1).
I However, whereas a normal class can contain methods, an

interface contains only method signatures – the “type” of the
method.
I For instance, the isEmpty() method of our Stack class has

the signature:
public boolean isEmpty();

4 / 19

Interfaces in Java

I Also, the purpose of interfaces is quite different to classes.
I Interfaces let us specify the methods should have, if we want

them to conform to that interface.
I Unlike classes, interfaces do not have constructors – we can

never instantiate an interface directly.
I But, we can create other classes that conform to that interface

– they are said to implement it.

5 / 19

Interfaces example

I For instance – we might have an interface StackADT,
representing the behaviour that any class should have, if we
want to call it a stack.

I What behaviours are those? We said any stack should support
the operations of pushing on an item, popping off on item,
letting us inspect the top, and checking whether the stack is
empty.

6 / 19

Interfaces example

I So an interface for a StackADT would look like this:
public interface StackADT {

public void push(int a);
public int pop();
public int top();
public boolean isEmpty();

}

I It details all the methods that a class must implement, if we want to
say it is of the StackADT type.

I Note that the method signatures end in a semicolon.

I Interfaces are an excellent way of specifing abstract data types.

7 / 19

Using an interface
I If we want to say that a class we have written is of type

StackADT, how do we do so?

I We use the keyword implements.
I If we wanted to say our Stack.java class from week 1, which

uses arrays, is of type StackADT, then our class might look
something like this:

public class Stack implements StackADT {
// field declarations go here
// constructor goes here

// implement the "push" method:
public void push (int a) {

stack[top] = a;
top = top+1;

}

// ... rest of class
8 / 19

Interfaces and software development

I Recall that in our discussion of abstract data types, we said
that they help improve modularity, and make it easier for
multiple developers to work on a single software system.

I In Java, abstract data types (ADTs) will often be represented
by interfaces, and the concrete data structures that implement
those ADTs will be classes.

I If someone is writing an ADT implementation – then as long as
we have the interface, we can start making use of that ADT in
our code, before the implementation is even finished.

I And if the implementation later needs to be changed – this can
be done without our code having to be re-written.

9 / 19

Generic types

10 / 19

Generic Types

I A generic type is a sort of a “template” for creating other types.

I For instance, suppose for some reason we needed a “Box” class
– a little like a linked list node, but which just holds a value.

I A Box for holding an int might look like this:
class IntBox {

int value;
public IntBox(int v) { this.value = v; }
public void setValue(int v) { this.value = v; }
public int getValue() { return value; }

}

11 / 19

Box for a String

I And a Box for holding a String might look like this:
class StringBox {

String value;
public StringBox(String v) { this.value = v; }
public void setValue(String v) { this.value = v; }
public String getValue() { return value; }

}

12 / 19

More general boxes
I But this is very repetitive – we are writing similar code over

and over, for boxes that hold different types of things.

I Can we make our code more general?

I One possibility is – instead of writing boxes to store ints,
Strings, and so on, we could create a box that stores Objects.

I Object is the most general class in Java – all other classes are
sub-classes of Object.

I Our code might be:
class ObjectBox {

Object value;
public ObjectBox(Object v) { this.value = v; }
public void setValue(Object v) { this.value = v; }
public Object getValue() { return value; }

}

13 / 19

More general boxes
I But this is very repetitive – we are writing similar code over

and over, for boxes that hold different types of things.

I Can we make our code more general?

I One possibility is – instead of writing boxes to store ints,
Strings, and so on, we could create a box that stores Objects.

I Object is the most general class in Java – all other classes are
sub-classes of Object.

I Our code might be:
class ObjectBox {

Object value;
public ObjectBox(Object v) { this.value = v; }
public void setValue(Object v) { this.value = v; }
public Object getValue() { return value; }

}

13 / 19

More general boxes
I But this is very repetitive – we are writing similar code over

and over, for boxes that hold different types of things.

I Can we make our code more general?

I One possibility is – instead of writing boxes to store ints,
Strings, and so on, we could create a box that stores Objects.

I Object is the most general class in Java – all other classes are
sub-classes of Object.

I Our code might be:
class ObjectBox {

Object value;
public ObjectBox(Object v) { this.value = v; }
public void setValue(Object v) { this.value = v; }
public Object getValue() { return value; }

}

13 / 19

More general boxes
I But this is very repetitive – we are writing similar code over

and over, for boxes that hold different types of things.

I Can we make our code more general?

I One possibility is – instead of writing boxes to store ints,
Strings, and so on, we could create a box that stores Objects.

I Object is the most general class in Java – all other classes are
sub-classes of Object.

I Our code might be:
class ObjectBox {

Object value;
public ObjectBox(Object v) { this.value = v; }
public void setValue(Object v) { this.value = v; }
public Object getValue() { return value; }

}

13 / 19

More general boxes
I But this is very repetitive – we are writing similar code over

and over, for boxes that hold different types of things.

I Can we make our code more general?

I One possibility is – instead of writing boxes to store ints,
Strings, and so on, we could create a box that stores Objects.

I Object is the most general class in Java – all other classes are
sub-classes of Object.

I Our code might be:
class ObjectBox {

Object value;
public ObjectBox(Object v) { this.value = v; }
public void setValue(Object v) { this.value = v; }
public Object getValue() { return value; }

}

13 / 19

More general boxes

I When using our ObjectBox, we would write code like this:
ObjectBox b = new ObjectBox(9);
b.setValue(13);
System.out.println(b.getValue()); // prints 13

14 / 19

More general boxes

ObjectBox b = new ObjectBox(9);
b.setValue(13);
System.out.println(b.getValue()); // prints 13

But now, we have no way of knowing exactly what type of value is stored
in a box – and we may accidentally change the type without realizing:

// somewhere else, we write:
b.setValue("cat");
// and later try to fetch an int out of the box
int myInt = (Integer) b.getValue(); // a runtime error!

NB: when we store an int in our ObjectBox, it automatically gets
converted to a class called Integer by Java; because primitive types like
int, byte and char etc. are not classes, and are not sub-types of Object.
And when we fetch the value out, we have to tell the compiler we think
the Object it holds is an Integer.

15 / 19

More general boxes

I The problem is that if we store an Object in a box, we never
can be sure exactly what sort of Object it is.

I But Java generics give us a way of getting the best of both
worlds –
we only need write one version of the class; but we can use it
with multiple types, and know exactly what sort of type we
have.

I Here is a version of the box class using Java generics:
public class Box<T> { // T stands for "Type"

T value;
public Box(T v) { this.value = v; }
public void setValue(T v) { this.value = v; }
public T getValue() { return value; }

}

16 / 19

Java generics

I The “T” is a bit like an empty placeholder in a template, which
we can fill in with some other type.

public class Box<T> { // T stands for "Type"
T value;
public Box(T v) { this.value = v; }
public void setValue(T v) { this.value = v; }
public T getValue() { return value; }

}

I And we could use our new, generic Box class like this:
Box<String> b = new Box<String>("cat");
b.setValue("dog");
System.out.println(b.getValue()); // prints "dog"

17 / 19

Java generics

I The “T” is a bit like an empty placeholder in a template, which
we can fill in with some other type.

public class Box<T> { // T stands for "Type"
T value;
public Box(T v) { this.value = v; }
public void setValue(T v) { this.value = v; }
public T getValue() { return value; }

}

I And we could use our new, generic Box class like this:
Box<String> b = new Box<String>("cat");
b.setValue("dog");
System.out.println(b.getValue()); // prints "dog"

17 / 19

Compile-time checking

I If we ever try to store an incorrect type in our variable . . .
b.setValue(3);

I . . . we will get an error at compile time, to let us know we
have made a mistake:

error: incompatible types: int cannot be converted to String
b.setValue(3);

18 / 19

Compile-time checking

I If we ever try to store an incorrect type in our variable . . .
b.setValue(3);

I . . . we will get an error at compile time, to let us know we
have made a mistake:

error: incompatible types: int cannot be converted to String
b.setValue(3);

18 / 19

Terminology

I We say that a generic class is a class that is parameterized over
types.

I We know that we can call a method with parameters . . .

myStack.push(3)

I . . . and in a similar way, we can make use of a generic type, by
supplying a type parameter, to be substituted into the
“placeholder”.

19 / 19

	Generic types

