
Big ‘O’ Notation

Lecturer: Arran Stewart

1 / 34



Outline

I How can we describe how fast or efficient an algorithm is?
I What is asymptotic complexity?
I What is “Big ‘O’ ” notation?

2 / 34



Introduction

I If someone says they have a “fast” or “efficient” algorithm for
some task, what exactly do they mean?

I They don’t mean some exact time the algorithm takes to run –
that could differ from computer to computer.

I Even if you and I were both running the same sorting algorithm
that someone said was “efficient”, and running it on the same
data . . .
if my computer is old and slow, or I am running lots of other
programs on it at the same time –
and your computer is fast and new –
then we would expect the algorithm to take different amounts
of time on each computer.

3 / 34



Comparing running time

I So we can’t describe how “fast” some algorithm is by saying “It
takes so many seconds” – that will vary from computer to
computer.

I And even on the same computer – if we run the sorting
algorithm once to sort, say, four items, and then again, to sort
four billion items, we expect the second task to take much
longer.

I The same algorithm is being used, and it’s just as efficient in
each case, but it’s working with different data.

4 / 34



Asymptotic complexity

I Instead, we compare algorithms using something called
asymptotic complexity.

I And we have a notation, “Big ‘O’ ” (or “Big Oh”) notation, for
writing down different sorts of asymptotic complexity.

5 / 34



Asymptotic

I “Asymptotic” means “the way something behaves, as a variable
it depends on increases towards infinity”.

I Let’s look at an example.

6 / 34



Number of characters in a string

I Suppose I want to count the number of characters in a string.
I We can imagine one way to do this – we start at the first

character in the string, and “walk” along it, incrementing the
number of characters we have seen each time by 1.

I And when we get to the end, we’ll know the total number of
characters in the string.

7 / 34



Linear time

I Using this method, we would expect that, if we count the
number of characters in a 1-million-character string, and the
number of characters in a 2-million-character string, the second
task will take roughly twice as long as the first.

I When describing complexity, we often use the variable n to
denote the size of our input. In this case, it means the length
of the string being counted.

8 / 34



Linear time

I In this case, when we double the size of the input – that is, we
double n – we expect the running time of the program to
double as well.

I We call two things that are related in this way, linearly related.

9 / 34



Growth as n tends towards infinity

I Why are we interested in the behaviour of our algorithm “as n
tends towards infinity”?

I Well, for very small strings, it may not be true that the
run-time of the algorithm is exactly linearly related to n.

I Perhaps when the algorithm starts, there will be some time
needed to do things like initialize variables, and so on – let’s
say these take 4 milliseconds on my computer.

I And suppose counting the length of a 10-character array takes
14 milliseconds, and counting the length of a 20-character
array, 24 milliseconds.

I Is two times 14 equal to 24? It is not.

10 / 34



Growth as n tends towards infinity

I So for these small arrays, the relationship between n (the size
of our input) and the run-time of the program is not exactly
linear.

I But as n gets bigger and bigger, the 4 milliseconds needed to
initialize variables will be a smaller and smaller fraction of the
running time.

I And as n “tends towards infinity”, the relationship will be linear.

11 / 34



Notation for linear growth

I We say that this algorithm runs “in linear time”.
I And we write this in “Big ‘O’ ” notation as O(n).
I What is the formal definition of what O(n) means?

12 / 34



Formal definition of O(n)

I Well, suppose we have a function f (x) describing the running
time of an algorithm.

I And suppose we have a second function, g(x), which we would
like to say is the “order of complexity” of f (x).

I When are we allowed to do so?
I We are allowed to do so when, beyond a certain point, f (x) is

no bigger than some constant multiple C of g(x).

13 / 34



Diagram of two functions f (x) and g(x)

[Image courtesy Wikimedia Commons, https://en.wikipedia.org/wiki/File:Big-O-notation.png]

14 / 34

https://en.wikipedia.org/wiki/File:Big-O-notation.png


Formal definition of O(n)

I In the diagram shown, there is a certain point, and a constant
C , beyond which f (x) is no bigger than C × g(x).

I That point is labelled x0; and it looks like we could give C the
value 1.

15 / 34



Our string-length example

I This formal definition is true of our string-length example as
well.

I We imagined that the formula for the running time of that
algorithm (on my computer, in milliseconds) was f (n) = 14+ n.

I We would like to say that the algorithm has linear running
time; so we’re proposing that there’s a function g(n) = n
which describes this running time.

I Are we allowed to say the algorithm has linear running time,
according to the formal definition?

16 / 34



Our string-length example

I We may do so if we can supply a constant C , and a “threshold
point” x0, beyond which f (n) is always less than or equal to
C × g(n).

i.e., for all values of n where n ≥ x0,

f (n) ≤ C × g(n).

I Is there such a C , and such an x0?
Yes, there is.

I We will let C = 2, for the moment, and take a look at the
graphs of f (n) and 2 × g(n).

17 / 34



Graph of our string-length example

18 / 34



Graph of our string-length example

I From the graph, we can see that there is a point x0 – where
n = 14 – beyond which, f (n) is always less than or equal to
C × g(n).

I So we may say that g(n) describes the asymptotic complexity
of our algorithm.

I Since g(n) = n, we use the notation O(n) to write this.

(If, say, g(n) were instead equal to n2, we would use the
notation O(n2).)

19 / 34



Informal intuition

I But we will not make you work too much with the formal
definition.

I Instead, we will just ask you to remember that it means,
roughly: when we say the complexity of some algorithm is
O(something) – where the “something” is some formula
involving n – we mean that as the size of our input grows larger,
that formula is a bound on the running time of our algorithm.

20 / 34



Constant time

I Let’s look at another sort of complexity an algorithm could
have.

I We could have an algorithm where, no matter how large our
input grows, it always takes the same length of time to run.

I Let’s see an example.

21 / 34



Counting string-length by cacheing

I Imagine again that we are wanting to count the length of
strings.

I But instead of strings that are 10, or 20, or even a million
characters long, we are now working with strings that are
billions of characters long.

I For strings this big, we decide that even our O(n) algorithm
isn’t fast enough.

I So we try something different . . .

22 / 34



Counting string-length by cacheing

I Whenever we first construct a string, presumably we know at
that point how big it is.

I So together with the actual string, we store a number, its
length.

I And if we join two strings together, say – then we know the
length of the new string is just the sum of the lengths of the
original two strings.

I Eventually, our program produces the billions-of-characters-long
string we want to know the length of.

23 / 34



Counting string-length by cacheing
I How can we find its length? We just look at the number we

stored with it describing its length.

We could imagine that we have a class that looks something
like this:

public class KnownLengthString {
//fields (attributes)
public int strLength;
public String str;
// ... methods and constructors ...

}

I So to find the length of the string, we just look at the value of
strLength.

I How long will this take us? It will take the same length of time,
regardless of how large the string is.

I You may sometimes see this sort of strategy referred to as
cacheing (storing) the length so that we can use it quickly later. 24 / 34



Complexity of our new string-length algorithm

I What is the complexity of our new algorithm?
I Well, it will always take the same length of time, regardless of

the length n of the string.
Perhaps on my computer, it takes 2 milliseconds.

I So what is the “Big ‘O’ ” complexity of the algorithm? It is
O(1).

I Because we can come up with a value of C (in this case, 2)
and a value of x0 (in this case, 0) such that for all strings with
length greater than x0, C × 1 is a bound on the run-time of the
program.

I We say that our new algorithm “runs in constant time” (with
respect to the size of the input).

25 / 34



Drawbacks of our new string-length algorithm

I So our new string-length algorithm is much faster than the
previous, O(n) algorithm.

I But it comes with some drawbacks.
I For instance, we now have to spend a little bit of memory, for

each string, storing the length. If we were storing many, many
strings, this might become significant.

I Our code will also be a bit more complicated to write – every
time we create a new string (for instance by joining other
strings together) we will need to correctly calculate and store
its length.

26 / 34



Other common sorts of complexity

I We have seen an algorithm which has linear, O(n) complexity
I And another that has constant, O(1) complexity
I But there are many other formulas we sometimes see.

27 / 34



Advantages of Big ‘O’ Notation

I Big ‘O’ complexity is unaffected by running-time being doubled,
halved, etc (in fact, being multiplied by any constant).

I Which is good, because if it wasn’t, algorithms would have
different complexity on (say) your fast laptop as opposed to my
slow laptop – and we want a measure which ignores those
differences.

I Instead, Big ‘O’ Notation tells us about the general shape of
the run-time graph as the size of input tends towards infinity.

28 / 34



Examples of complexity types - O(1)

I O(1): constant time.
I As the size of input increases, the run-time of the algorithm remains

constant.
I Examples: reading from a variable; looking up a cell from an array

29 / 34



Examples of complexity types - O(n)

I O(n): linear time.
I As the size of input increases, the run-time of the algorithm increases

proportionately.
I Examples: inspecting each element of an array or list; any loop

(e.g. a “for” loop) that iterates over the input.

30 / 34



Examples of complexity types - O(n2)

I O(n2): quadratic time.

I As the size of input increases, the run-time of the algorithm increases in
proportion to the square of the size of the input.

I Examples: algorithms with nested “for” loops:

for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {

// ... some operation
}

}
31 / 34



Choosing algorithms

I We say that O(n2) algorithms are “asymptotically slower” than
O(n) algorithms.
I Meaning, the O(n2) algorithm might actually run faster than

the O(n) algorithm, for small values of n.
I But there’s some point beyond which, as the size of the input n

grows, the O(n2) algorithm is always slower.
I So if we have the choice between an O(n) and an O(n2)

algorithm, which should we choose?

32 / 34



Choosing algorithms

I It depends on exactly what task we are doing.
I If the O(n2) algorithm is easier to code than the O(n)

algorithm, and we know we will only be dealing with relatively
small inputs, then perhaps the O(n2) algorithm is fine – we
probably won’t know until we measure how long it takes.

I But the larger the input, the more of a problem the run-time of
our O(n2) algorithm will become, so eventually, we may need
to spend time carefully coding the trickier O(n) algorithm.

33 / 34



Complexity types

I We will see other sorts of run-time complexity later – for
instance, algorithms that take logarithmic time (written as
O(log n)).

34 / 34


