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Outline

We discuss:

I What are some search algorithms?
I How can they be implemented?
I What is their complexity?
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Search

I A very common use of computers is to look up data – for
instance, in a library catalog, or some other database

I A very simple form of this which we will look at is searching
through a collection (such as an array) for a particular item.
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Sequential search

Suppose we have an array where the elements are in no particular
order . . .

3 47 6 58

I In that case, if we want to find whether the array contains
some particular number, we have no choice but to search it
sequentially from beginning to end.
I This is therefore called sequential search

I e.g. Suppose we want to know if the number 8 appears, and
where – we must look through most of the array to find it.
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Sequential search code

Java code for sequential search is available in the
SearchAlgorithms class in the code samples. Here is a simplified
version we will discuss:

/*
* @param a array to be searched
* @param key item being searched for
* @return index of key in a if key is found, and -1 otherwise
*/ public static int SequentialSearch(int[] a, int key) {
for (int i = 0; i < a.length; i++) {

if (a[i] == key) { // found it!
return i;

}
}
return -1; // if we get here, the item was not found

}
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Sequential search

I In the best case, we may be lucky – perhaps the item we are
looking for is the very first element in the array.

I But in the worst case, we may have to search the whole array
before concluding that the element is not contained in it.

I The time for searching an array in the worst case is
proportional to the size of the array;
I Therefore the worst-case complexity of sequential search is

O(n).
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Binary search

I But if the input array has been sorted, there is a better way of
searching for an element.

I Instead of starting our search from the end, we start from the
middle.

I Once we have examined the middle element –
Since we know the array is sorted, we can work out whether (if
the item we are after is in the array) it is on our left or our
right.
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Binary search example
I For instance, suppose we are searching the array below to see

whether it contains the number 6.
I The orange square shows the element we are “currently

considering”;
I gray squares show elements we know do not contain the

element we are after, and can therefore rule out.

3 5 96 1511 16

3 5 96 1511 16

3 5 96 1511 16
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Binary search code
We will discuss the following code for binary search.
/**
* @param a array to be searched, assumed to be sorted
* @param key item being searched for
* @return index of key in a if key is found, and -1 otherwise
*/

public static int BinarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int mid;

while (low <= high) {
mid = (low + high) / 2;
if (a[mid] < key) { // continue to search lower part

low = mid + 1;
} else if (a[mid] > key) { // continue to search upper part

high = mid - 1;
} else { // we've found it

return mid;
}

}
// if we get here, the item was not found
return -1;

}
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Binary search complexity
I What is the worst-case complexity of the binary search

algorithm? One way to think about it is as follows.

I When we start to search an array of size n, we don’t know at
all where the element we are searching for could be.

I But after the first “step”, we have reduced the size of the array
portion we need to search – the new portion is half the old.

I And eventually, the size of the portion we need to search will
be only 1 element in size.
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Binary search complexity

I Once the size of the portion we need to search is of size 1
(i.e. a single element) . . .

I At that point, we know exactly where the element is
(or, we know that the element is not to be found in the array)

I (Alternatively – we may hit the element earlier – but here we
will consider the worst case.)

3 5 96 1511 16

3 5 96 1511 16

3 5 96 1511 16

11 / 15



Binary search complexity

I Once the size of the portion we need to search is of size 1
(i.e. a single element) . . .

I At that point, we know exactly where the element is
(or, we know that the element is not to be found in the array)

I (Alternatively – we may hit the element earlier – but here we
will consider the worst case.)

3 5 96 1511 16

3 5 96 1511 16

3 5 96 1511 16

11 / 15



Binary search complexity

I Once the size of the portion we need to search is of size 1
(i.e. a single element) . . .

I At that point, we know exactly where the element is
(or, we know that the element is not to be found in the array)

I (Alternatively – we may hit the element earlier – but here we
will consider the worst case.)

3 5 96 1511 16

3 5 96 1511 16

3 5 96 1511 16

11 / 15



Binary search complexity

I So for instance, if our original array is of size 32, then the sizes
of the portions we need to search are (in the worst case):

32
16
8
4
2
1

I We must perform 5 “halvings”;

I And the formula for the number of halvings we have to perform
on a number before we get to 1 is log2 n
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Binary search complexity

I So – for an array of size n, we must (in the worst case) perform
log2 n of these halvings

I So the worst-case complexity of binary search is O(log n).
I (Why do we leave of the subscript 2? Because when dealing

with logarithms, changing the base amounts to multiplication by
some factor – and “big ‘O’ ” complexity ignores multiplications
by a constant factor.)
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Recursive binary search

I The method we have seen is an iterative binary search – it
contains a loop (a while loop) and does not call itself.

I We can also implement binary search using recursion.
I We will discuss the following code:

boolean binarySearch(int[] a, int lf, int rt, int key) {
if (rt - lf == 1)

return a[lf] == key || a[rt] == key;
int mid = (lf+rt)/2;
if (a[mid] > key)

return binarySearch(a,lf,mid,key);
else

return binarySearch(a,mid,rt,key);
}
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Recursive binary search

I Binary search can be expressed recursively in a very natural
fashion, because we repeatedly perform the same operation of
calculating the middle element and then searching in an array
of half the size

I What is the “simplest case” in this situation?
I The length of the array is the parameter that is reduced at each

stage of binary search and so the base case is when the left and
the right bounds of the array are adjacent

I Once this happens, it is trivial to determine whether or not the
element we are looking for is in the array or not.
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