
Recursion

Lecturer: Arran Stewart

1 / 22

Outline

We discuss:

I What is recursion?
I What are some examples of recursive programs?

2 / 22

Calling methods

I In Java, instructions for the computer to carry out are
contained in methods.

I For instance, the insertion sort code we looked at is contained
in the method:

public static void insertionSort(short[] arr)

in the class SortingAlgorithms.

3 / 22

Calling methods

I And we also have seen that methods can call other methods.

I For instance, in our array-based implementation of a stack, the
pop() method looked like this:

public void pop() {
if (isEmpty()) {

throw new Underflow("Stack empty so can not pop");
}
topOfStack = topOfStack - 1;

}

I The pop() method here calls the isEmpty() method.

4 / 22

Recursive methods

I However, a method can also call itself.
I This behaviour is known as recursion.
I Recursion is an extremely powerful technique for expressing

some complex programming tasks
I This is because it provides a very natural way to break problems

down into smaller parts
I However, there are costs associated with recursion we need to

be aware of.

5 / 22

Recursive methods

A simple example:

public static void forever() {
System.out.println("hello world");
forever();

}

How will this behave when run?

6 / 22

Ending recursion

A method that runs forever is not (usually) very useful.

Consider this example:

public static void myMethod(int i) {
if (i <= 1) {

System.out.print("finishing");
return;

} else {
myMethod(i - 1);

}
}

How will this behave if we call it as follows: myMethod(3)?

7 / 22

Local variables

I Each recursive call to the method creates a “new copy” of the
method - parameters and all local variables are created again

I The compiler keeps track of them all and ensures they do not
get mixed up.

8 / 22

What happens in the method call?

We can imagine the recursive method calls looking something like
this:

myMethod(3)

myMethod(2)

myMethod(1)

9 / 22

Final method call

I Eventually, the i <= 1 condition will be satisfied, and the
method will not call itself again, but instead end.

public static void myMethod(int i) {
if (i <= 1) {

System.out.print("finishing");
return;

} else {
myMethod(i - 1);

}
}

10 / 22

Factorial example

I The factorial function is defined as follows:

n! = n(n − 1)(n − 2) . . . (1)

I Can we write a recursive method to calculate it?

11 / 22

factorial method

public long factorial(int n) {

if (n == 0) {

return 1;

}

return n*factorial(n-1);

}

12 / 22

factorial method behaviour

How does the factorial method behave, when called with, say, 4 as
an argument?

factorial(4) factorial(3)= 4 *

factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1)

factorial(1) = 1 * factorial(0)

factorial(0) = 1

13 / 22

factorial method behaviour

How does the factorial method behave, when called with, say, 4 as
an argument?

factorial(4) factorial(3)= 4 *

factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1)

factorial(1) = 1 * factorial(0)

factorial(0) = 1

13 / 22

local variables in factorial

In this case –

factorial(4) has a parameter n equal to 4
factorial(3) has its own parameter n, equal to 3

factorial(2) has its own parameter n, equal to 2
factorial(1) has its own parameter n, equal to 1

14 / 22

local variables in factorial

When using Java – each of these local variables does take up space
in memory when run.

So that means, if the method will be called thousands or millions of
times, it may not be wise to use recursion – we may run out of
space.

(But note that not all languages have this problem – some are
especially designed to work well with recursive functions.)

15 / 22

iterative version

It is possible to write what is called an iterative version of factorial.
Instead of using recursion, we use a for loop:

public long factorial(int n) {
long result = 1;
for(int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

Any method we can write using recursion, we can also write using loops
and iteration.

16 / 22

iteration vs recursion

I So why write methods using recursion?
I One reason is that the methods can often be written more

simply that way. (We will see this when we discuss trees.)
I Which looks simpler?

public long factorial(int) {

if (n == 0) {

return 1;

}

return n*factorial(n-1);

}

public long factorial(int n) {
long result = 1;
for(int i = 1; i <= n; i++) {
result = result * i;

}
return result;

}

I The difference may not seem much for a small method.
I For more complicated methods, however, it can become

significant.

17 / 22

iteration vs recursion

I So why write methods using recursion?
I One reason is that the methods can often be written more

simply that way. (We will see this when we discuss trees.)
I Which looks simpler?

public long factorial(int) {

if (n == 0) {

return 1;

}

return n*factorial(n-1);

}

public long factorial(int n) {
long result = 1;
for(int i = 1; i <= n; i++) {
result = result * i;

}
return result;

}

I The difference may not seem much for a small method.
I For more complicated methods, however, it can become

significant.

17 / 22

Ingredients for recursive definition

Recall our simple recursion example:

public static void myMethod(int i) {
if (i <= 1) {

System.out.print("finishing");
return;

} else {
myMethod(i - 1);

}
}

I Every recursive method definition needs two parts - the base case and
the recursive part

18 / 22

Base case

public static void myMethod(int i) {
if (i <= 1) { // base case

System.out.print("finishing");
return;

} else { // recursive part
myMethod(i - 1);

}
}

I The base case does not call the method again.
I Instead, it describes how the method should behave for some

specified parameters.
I Typically, the base case represents some sort of “trivial” case . . .

I e.g., dealing with the int 0; or, for lists, an empty list; etc.

19 / 22

Recursive part
public static void myMethod(int i) {

if (i <= 1) { // base case
System.out.print("finishing");
return;

} else { // recursive part
myMethod(i - 1);

}
}

I The recursive part describes how the method should behave in terms
of another call to the same method – but with different parameters.
I Why “different parameters”? Because if it passed the same

parameters, the method would behave in exactly the same way –
and the recursion would never end.

I To work correctly, the “different parameters” must be closer to the
base case (in some sense)
I In this case – myMethod(3) calls myMethod(2); and 2 is closer

to the base case (1).

20 / 22

Recursive part
public static void myMethod(int i) {

if (i <= 1) { // base case
System.out.print("finishing");
return;

} else { // recursive part
myMethod(i - 1);

}
}

I The recursive part describes how the method should behave in terms
of another call to the same method – but with different parameters.
I Why “different parameters”? Because if it passed the same

parameters, the method would behave in exactly the same way –
and the recursion would never end.

I To work correctly, the “different parameters” must be closer to the
base case (in some sense)
I In this case – myMethod(3) calls myMethod(2); and 2 is closer

to the base case (1).
20 / 22

Ordering

Order is important! Don’t do this:

public long factorial(int n) {
return n*factorial(n-1);
if (n == 0) {

return 1;
}

}

If we write the factorial method like this, the recursive part will get
executed – and the method will never reach the base case!

In Java, this means a stack overflow error will occur.

21 / 22

Further examples

I We will see a further example of recursion when we look at
binary search.

22 / 22

